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Abstract

This study considers the role of the upstream process research and development (R&D) when

downstream develops new products. We build a model in which an upstream firm conducts

cost-reducing investment and two downstream firms develop new products. We assume that

all products are differentiated. We show that downstream product development promotes up-

stream investment. We also demonstrate that downstream product development is a strategic

complement if upstream R&D efficiency is high, while it is a strategic substitute if it is low.

This implies that the occurrence of complementary equilibrium does not need asymmetry in the

differentiated final-product markets and is in sharp contrast to the previous study.
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1 Introduction

In vertical structures, research and development (R&D) in the upstream plays a key role. This

is because when markets expand due to introducing new products downstream, since use of

inputs increases, the upstream cost-reducing R&D becomes even more important (Fontana and

Guerzoni, 2008). For example, in assembly industries, such as automobiles and computers, if

new products are developed downstream, it be capable of promoting the upstream investment

to reduce the production cost of inputs.

We consider the role of upstream process R&D when downstream develops new products.

To do so, we build a model comprising an innovative upstream firm and two downstream firms

that develop new products in the case where all final products are differentiated. We show

that upstream investment increases as downstream product development progresses. We also

demonstrate that in a downstream product-R&D game, complementary equilibrium appears if

upstream R&D efficiency is high but asymmetric equilibrium appears if it is low. Basak and

Mukherjee (2018) reveal that emergence of complementary equilibrium always needs asymmetric

product differentiation. However, we find that complementary equilibrium appears even without

such asymmetry. This result arises from a fall in input price caused by increasing upstream

investment due to downstream market expansion. Hence, our findings provide new insights into

the studies of innovation and vertical structures.

Some studies also focus on upstream process R&D, however, their frameworks and purposes

substantially differ from ours. Chen and Sappington (2010) examine the effects of vertical

integration and separation on upstream innovation. Although Hu et al. (2020) consider upstream

process R&D, their purpose is to examine the relationship between upstream cost-reducing R&D

and cross-holdings among downstream.

In this study, all proofs are illustrated in the Supplementary Material.
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2 Model and Results

We consider a vertically related market with an upstream firm (U) and two symmetric down-

stream firms (Di, i = 1, 2). Di uses one unit of the input to produce one unit of the final

product, and it competes in Cournot fashion.1 For simplicity, we omit other production costs

for Di. The U decides the input price w and makes a take-it-or-leave-it-offer.

The U engages in R&D to reduce the constant marginal cost c ∈ (0, 1). To create demands

by introducing a new product, Di chooses whether to conduct R&D paying a fixed-cost f > 0 or

not. Let Di be the existing product qe,i and its new product qn,i. When D1 and D2 introduce

new products, inverse demands are2

pe,i = 1− qe,i − γ(qn,i + qe,j + qn,j),

pn,i = 1− qn,i − γ(qe,i + qe,j + qn,j),
(1)

where pe,i (pe,j) is the price of the existing product of Di (Dj) and pn,i (pn,j) is the price of

the new product of Di (Dj), i ̸= j and i, j = 1, 2. γ ∈ [0, 1) measures the degree of product

substitutability among final products.

The gross profit of Di is

πDi(qe,i, qn,i) ≡ (pe,i − w)qe,i + (pn,i − w)qn,i. (2)

If Di innovates, its profit is πDi(qe,i, qn,i)− f . If Di does not, its profit is πDi(qe,i, 0).

The profit of U is

πU ≡ (w − (c− x))Q− kx2, (3)

where x is the investment level and kx2 is the R&D cost. k > 0 denotes R&D efficiency. Q

is the demand for the input. Q =
∑

i qe,i if nobody innovates. Q =
∑

i qe,i + qn,j if only Dj

innovates. Q =
∑

i qe,i +
∑

i qn,i if everyone innovates.

We consider the following four-stage game. In the first stage, D1 and D2 independently
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and simultaneously choose whether to do R&D by paying the fixed cost (I) or not (N). In the

second stage, U decides the investment level. At the third stage, U charges input price. Last,

downstream competes à la Cournot.

This timing structure corresponds to the difficulty in R&D. In general, product development

requires a sunk cost, such as a long-term contract with researchers, and it takes much longer

time. Hence, the downstream R&D is at the first stage. It is not needed the effort such that

produces prototype and repeatedly tests its safety, so the upstream R&D is at the second stage.

Downstream can flexibly adjust their production, so the quantity of final products is decided in

the final stage. The solution concept is the subgame perfect Nash equilibrium.

Depending on downstream investment decisions, four regimes can arise: II, IN , NI, and

NN . Using (1)–(3), we obtain the equilibrium solutions, which are reported in Appendix A.

To ensure a positive marginal cost after investment, we assume

k > k0 ≡
1

2c(1 + 2γ)
.

We establish the following results from Appendix A.

Proposition 1. (i) xII > xIN = xNI > xNN . (ii) ∂xr/∂k < 0 and ∂xr/∂γ < 0, where

r = II, IN,NI,NN .

Corollary 1. (i) wNN > wIN = wNI > wII . (ii) ∂wr/∂k > 0 and ∂wr/∂γ > 0, where

r = II, IN,NI,NN .

The logic behind part (i) of Proposition 1 is as follows. As U engages in cost-reducing

investment, U invests a lot if it can sell input a lot. An innovation by Di increases the number of

product varieties, so the demand for the input also expands. If D1 and D2 innovate, because the

input demand is the largest among all regimes and the sales opportunity of inputs is similarly

the largest, the investment level becomes the largest. Hence, when nobody innovates, the
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investment size becomes the least among all regimes. If only Di innovates, the investment

becomes intermediate level.

Part (ii) is intuitive. The first result is natural. Although larger γ makes competition

tougher, in our model, it reduces downstream market size. The latter effect is dominant, so the

input demand shrinks. This impedes upstream investments.

Proposition 1 immediately yields Corollary 1. Since a larger investment corresponds to a

lower input price, we obtain the ranking of the input price. Part (ii) is a natural one. The effects

of γ are similar to those of part (ii) of Proposition 1.

Our model has a similar timing structure to Banerjee and Lin (2003): Downstream first

invests, and after observing it, the upstream charges the price. They emphasize that the raising

input price extracts benefits of downstream investment.3 By contrast, in our study, since the

market expansion due to downstream R&D promotes upstream investment, as a result, the input

price falls. Corollary 1 implies that upstream R&D is very influential in vertical structures.

To illustrate equilibrium, we define two R&D benefits of Di (Chowdhury, 2005). One is

non-strategic benefit, which is ΦI ≡ πIND1 − πNN
D1 = πNI

D2 − πNN
D2 . The other is strategic benefit,

which is ΦN ≡ πIID1−πNI
D1 = πIID2−πIND2 . (ΦN and ΦI are reported in Appendix B.) Di innovates

if f < ΦI , and it does not innovate if ΦN < f . Hence, IN&NI can appear if ΦN < ΦI ; NN&II

can appear if ΦI < ΦN . These arguments and Appendix A yield Proposition 2.

Proposition 2.

1. Suppose that k ∈ (k0, 1/(4γ)). Then, ΦI < ΦN . (i) If f < ΦI , II appears, (ii) if f > ΦN ,

NN appears, and (iii) if ΦI ≤ f ≤ ΦN , NN&II can appear.

2. Suppose k > 1/(4γ) or 1/(4γ) ≤ k0. Then, ΦN < ΦI . (i) If f < ΦN , II appears, (ii) if

f > ΦI , NN appears, and (iii) if ΦN ≤ f ≤ ΦI , IN&NI can appear.

When the fixed-cost f is small (large) because I (N) is the dominant strategy, II (NN)
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1/(4γ)k0
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f/(1− c)2
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NN
NN&II

ΦN/(1− c)2

ΦI/(1− c)2

IN&NI

Figure 1: Equilibrium of the game (k0 < 1/(4γ))

appears. If f is an intermediate size, Di’s strategy depends on the upstream R&D efficiency k:

(i) if k is small, NN&II can appear. (ii) If k is large, IN&NI can appear (see Figure 1).

The intuition is as follows. (i) When k is small, the upstream R&D is efficient. In this case,

if Di deviates from II, its markets become half. Furthermore, the input price jumps, so Di does

not deviate from II. If Di deviates from NN , the number of product markets increases. As

upstream R&D efficiency is high and the range of the drop in input price is larger, downstream

production costs largely fall. However, this promotes rival’s production and makes competition

in the existing product market tougher, so the benefit of R&D can be canceled. Di does not

deviate.

Basak and Mukherjee (2018) find that, in a unionized duopoly, emergence of the complemen-

tary equilibrium needs asymmetric product differentiation and decentralized unions. In contrast,

we show that the complementary equilibrium appears even if there is no asymmetry in product

differentiation. This implies that the upstream R&D has an important role for the downstream

innovation, and therefore, gives a new insight into the previous literature.
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(ii) When k is large (or 1/(4γ) ≤ k0), because upstream R&D is inefficient, the effects of

upstream investment on the input price weakens. If Di deviates from II, its product markets

become half and input price rises. However, when k is large because the input price is high and

the downstream production cost is also high, and the profit loss from losing a market is small.

That is, the R&D benefit is small, so Di chooses N when the rival chooses I. The deviation

from NN increases product market and lowers input price. Then, although the R&D benefit is

small, the input price is high because k is large. Hence, a fall in production cost through the

decrease in input price becomes attractive. Di chooses I when the rival chooses N .

Acknowledgements

This study was supported by JSPS KAKENHI (18K01613, 20K01646). All errors are our own.

Appendix A. Equilibrium Solutions

NN

wNN =
(1 + c)(γ + 2)k − 1

2(γ + 2)k − 1
; xNN =

1− c

2(γ + 2)k − 1
; πNN

U =
(1− c)2k

2(γ + 2)k − 1
,

qNN
e,i =

(1− c)k

2(γ + 2)k − 1
; πNN

Di =
(
qNN
e,i

)2
, for i = 1, 2.

IN (NI)

xIN = xNI =
(1− c)(3− γ)

4(2 + 2γ − γ2)k − (3− γ)
,

wIN = wNI =
2(1 + c)(2 + 2γ − γ2)k − (3− γ)

4(2 + 2γ − γ2)k − (3− γ)
; πINU =

(1− c)2(3− γ)k

4(2 + 2γ − γ2)k − (3− γ)
,

qINe,1 = qINn,1 =
(1− c)(2− γ)k

4(2 + 2γ − γ2)k − (3− γ)
; qINe,2 =

2(1− c)k

4(2 + 2γ − γ2)k − (3− γ)
,

πIND1 =
2(1− c)2(2− γ)2(1 + γ)k2

[4(2 + 2γ − γ2)k − (3− γ)]2
; πIND2 =

(
qINe,2

)2
,

where qNI
e,2 = qNI

n,2 = qINe,1 = qINn,1 , q
IN
e,2 = qNI

e,1 , π
NI
D2 = πIND1 , and π

NI
D1 = πIND2 .

II

wII =
(1 + c)(2γ + 1)k − 1

(4γ + 2)k − 1
; xII =

1− c

(4γ + 2)k − 1
; πIIU =

(1− c)2k

(4γ + 2)k − 1
,

qIIe,i = qIIn,i =
(1− c)k

2 [(4γ + 2)k − 1]
; πIIDi =

(1− c)2(γ + 1)k2

2 [(4γ + 2)k − 1]2
,
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Appendix B.

ΦN =

(1−c)2(1−γ)k2
[

1+4γ−γ2 + 16(2+6γ+6γ2+2γ3−γ4)k2

− 8(2+4γ+3γ2−γ3)k

]
2[(4γ + 2)k − 1]2 [4(2 + 2γ − γ2)k − (3− γ)]2

> 0

ΦI =
(1−c)2(1−γ)k2

[
8(8+8γ−4γ4)k2 − 8(2+2γ+γ2−γ3)k − 2γ2+5γ−1

]
[2(γ + 2)k − 1]2 [4(2 + 2γ − γ2)k − (3− γ)]2

> 0.

Notes

1Our main results do not alter in Bertrand competition.

2The other possible setting is that the existing and new products are differentiated. The formula in such case is

pe,i = 1− (qe,i + qe,j)− γ(qn,i + qn,j) for i ̸= j. However, our main results do not alter, so we employ a simpler

form (1).

3Banerjee and Lin (2003) show that a fixed-price contract of input-price resolves this hold-up problem. In contrast,

Takauchi and Mizuno (2019) demonstrate that the fixed-price contract can harm upstream and downstream.

References

[1] Banerjee, S., Lin, P., 2003. Downstream R&D, raising rival’s costs, and input price contracts.

Int. J. Ind. Organ. 21, 79-96.

[2] Basak, D., Mukherjee, A., 2018. Labour unionisation structure and product innovation. Int.

Rev. Econ. Financ. 55, 98-110.

[3] Chen, Y., Sappington, D.E., 2010. Innovation in vertically related markets. J. Indust. Econ.

58, 373-401.

[4] Chowdhury, P.R., 2005. Patents and R&D: The tournament effect. Econ. Lett. 89, 120-126.

7



[5] Fontana, R., Guerzoni, M., 2008. Incentives and uncertainty: An empirical analysis of the

impact of demand on innovation. Cambr. J. Econ. 32(6), 927-946.

[6] Hu, Q., Monden, A., Mizuno, T., 2020. Downstream cross-holdings and upstream R&D. J.

Indust. Econ. (forthcoming)

[7] Takauchi, K., Mizuno, T., 2019. Solving a hold-up problem may harm all firms: downstream

R&D and transport price contracts. Int. Rev. Econ. Financ. 59, 29-49.

8



“Downstream new product development

and upstream process innovation”

Supplementary Material (Not for Publication)

This supplement provides all proofs and supporting results.

I Proofs

Proof of Proposition 1. (i) xII − xIN = 2k(1−c)(1−γ)
[(4γ+2)k−1][4(2+2γ−γ2)k−(3−γ)]

> 0 and xIN − xNN =
2k(1−c)(1−γ)(2−γ)

[2(γ+2)k−1][4(2+2γ−γ2)k−(3−γ)]
> 0. (ii) The partial derivative of xr (r = II, IN,NN) with

respect to k yields ∂xII/∂k = −2(1−c)(2γ+1)
[(4γ+2)k−1]2

< 0, ∂xIN/∂k = −4(1−c)(3−γ)(2+2γ−γ2)
[4(2+2γ−γ2)k−(3−γ)]2

< 0, and

∂xNN/∂k = − 2(1−c)(γ+2)
[2(γ+2)k−1]2

< 0. The partial derivative of xr with respect to γ yields ∂xII/∂γ =

− 4(1−c)k
[(4γ+2)k−1]2

< 0, ∂xIN/∂γ = − 4(1−c)(γ2−6γ+8)k
[4(2+2γ−γ2)k−(3−γ)]2

< 0, and ∂xNN/∂γ = − 2(1−c)k
[2(γ+2)k−1]2

< 0.

Proof of Corollary 1. (i) wNN − wIN = k(1−c)(2−γ)(1−γ)
[2(γ+2)k−1][4(2+2γ−γ2)k−(3−γ)]

> 0 and wIN −

wII = k(1−c)(1−γ)
[(4γ+2)k−1][4(2+2γ−γ2)k−(3−γ)]

> 0. (ii) The partial derivative of wr with respect to k

yields ∂wII/∂k = (1−c)(2γ+1)
[(4γ+2)k−1]2

> 0, ∂wIN/∂k = 2(1−c)(3−γ)(2+2γ−γ2)
[4(2+2γ−γ2)k−(3−γ)]2

> 0, and ∂wNN/∂k =
(1−c)(γ+2)
[2(γ+2)k−1]2

> 0. The partial derivative of wr with respect to γ yields ∂wII/∂γ = 2(1−c)k
[(4γ+2)k−1]2

> 0,

∂wIN/∂γ = 2(1−c)k(4−γ)(2−γ)
[4(2+2γ−γ2)k−(3−γ)]2

> 0, and ∂wNN/∂γ = (1−c)k
[2(γ+2)k−1]2

> 0.

Proof of Proposition 2. Comparing ΦN with ΦI , we have

ΦN − ΦI =
(1− c)2(1− γ)2k2(1− 4γk) g(k, γ)

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [γ + (−4γ2 + 8γ + 8) k − 3]2
,

where g(k, γ) ≡ 16(3γ4 + 5γ3 + 16γ2 + 22γ + 8)k3 − 12(5γ3 + 5γ2 + 8γ + 6)k2 + 24γ2k− 3γ + 3.

We show that g(k, γ) > 0 and sign{ΦN −ΦI} depends only on 1− 4γk. To prove g(k, γ) > 0, it

is sufficient to show that g(k, γ) has its minimum value at k = k0 and c = 1, and that value is

positive.

First, we show that g(k, γ) is an increasing function of k; that is, g(k, γ) is the smallest at

k = k0. The first derivative g(k, γ) with respect to k is ∂g(k, γ)
/
∂k = 24[2(3γ4 + 5γ3 + 16γ2 +

22γ + 8)k2 − (5γ3 + 5γ2 + 8γ + 6)k+ γ2]. The ∂g(k, γ)/∂k is a quadratic function of k and the

coefficient of k2 is positive. Hence, by solving ∂g(k, γ)/∂k > 0 for k, we have k < k1 and k > k2,

where k1 and k2 are roots in g(k, γ) = 0 on k and k1 < k2.

As k0 = 1/[2c(2γ + 1)] decreases with c, k0 has its minimum value at c = 1. We illustrate

k1, k2, and k0 at c = 1 in Figure I.1. Using numerical calculation, we find that for γ ∈ [0, 1],

the unique root for k2 − k0|c=1 = 0 is γ = 1. Hence, ∂g(k, γ)/∂k > 0 for any k > k0. Therefore,
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Figure I.1: k0 at c = 1 and the two roots for g(k, γ) = 0

g(k, γ) takes its minimum value at k = k0.

Second, we show ∂g(k0, γ)/∂c < 0. Derivation yields ∂g(k0, γ)/∂c = (∂g(k0, γ)/∂k)(∂k0/∂c) =

(∂g(k0, γ)/∂k)
[
− 1

2c2(2γ+1)

]
< 0. The last inequality is satisfied because ∂g(k, γ)/∂k > 0. Hence,

g(k0, γ) is a decreasing function for c and it takes its minimum value when c = 1.

From the above discussion, g(k0, γ) has the following minimum value at k = k0 and c = 1:

g(k0, γ)
∣∣
c=1

= (1−γ)2(γ+1)
(2γ+1)3 > 0. Because g(k0, γ)

∣∣
c=1

is positive, ∀k > k0, g(k, γ) > 0. This result

implies that sign{ΦN − ΦI} depends only on 1− 4γk. Hence, ΦN > ΦI iff k < 1/(4γ).

II Downstream Differentiated Bertrand

This section provides the equilibrium of the game in which downstream market competition is

differentiated Bertrand. In this case, we also obtain a similar result as in the Cournot case. To

identify Bertrand rivalry, we attach “ˆ” to the variables of the equilibrium solutions.

• NN regime: As qn,i = qn,j = 0 for i ̸= j, the demand functions are qe,i =
(1−γ)−pe,i+γpe,j

1−γ2 and

qe,j =
(1−γ)−pe,j+γpe,i

1−γ2 . From these, we obtain ŵNN = 1−(c+1)(2−γ)(γ+1)k
1−2(2−γ)(γ+1)k , x̂NN = 1−c

2(2−γ)(γ+1)k−1 ,

π̂NN
U = (1−c)2k

2(2−γ)(γ+1)k−1 , p̂
NN
e,i = 1−(γ+1)k(c−2γ+3)

2(γ2−γ−2)k+1
, and π̂NN

Di = (1−c)2(1−γ)(γ+1)k2

(2(γ2−γ−2)k+1)2 .

• IN (NI) regime: Only Di innovates, so qn,j = 0. The demand functions are

qe,i=
(1−γ)−(γ+1)pe,i+γ(pn,i+pe,j)

(1−γ)(2γ+1) , qn,i=
(1−γ)−(γ+1)pn,i+γ(pe,i+pe,j)

(1−γ)(2γ+1) , and qe,j=
(1−γ)−(γ+1)pe,j+γ(pe,i+pn,i)

(1−γ)(2γ+1) .

Solving the game, we obtain ŵIN = 2(c+1)(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3)
4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) ,

x̂IN = (1−c)(γ(γ+5)+3)
4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) , π̂

IN
U = (1−c)2(γ(γ+5)+3)k

4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3) ,

p̂INe,i = −(2γ+1)k(c(γ+1)(γ+2)+5(1−γ)γ+6)+γ(γ+5)+3
γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 , p̂INn,i = −(2γ+1)k(c(γ+1)(γ+2)+5(1−γ)γ+6)+γ(γ+5)+3

γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 ,

p̂INe,j = −2(2γ+1)k(2γc+c+2(1−γ)γ+3)+γ(γ+5)+3
γ(γ+5)−4(2γ+1)((2−γ)γ+2)k+3 , π̂INDi = 2(1−c)2(1−γ)(2γ+1)(3γ+2)2k2

(4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3))2 , and π̂INDj =
4(1−c)2(1−γ)(γ+1)3(2γ+1)k2

(4(2γ+1)((2−γ)γ+2)k−(γ(γ+5)+3))2 .

• II regime: When D1 and D2 develop new products, the demand functions are

qe,i =
(1−γ)−(2γ+1)pe,i+γ(pn,i+pn,j+pe,j)

(1−γ)(3γ+1) , qe,j =
(1−γ)−(2γ+1)pe,j+γ(pn,i+pn,j+pe,i)

(1−γ)(3γ+1) ,
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qn,i =
(1−γ)−(2γ+1)pn,i+γ(pn,j+pe,i+pe,j)

(1−γ)(3γ+1) , and qn,j =
(1−γ)−(2γ+1)pn,j+γ(pn,i+pe,i+pe,j)

(1−γ)(3γ+1) . Solving the

game, we obtain ŵII = (c+1)(3γ+1)k−(γ+1)
(6γ+2)k−(γ+1) , x̂II = (1−c)(γ+1)

(6γ+2)k−(γ+1) , π̂
II
U = (1−c)2(γ+1)k

(6γ+2)k−(γ+1) , q̂
II
e,i =

(3γ+1)k(γc+c−γ+3)−2(γ+1)
4(3γ+1)k−2(γ+1) , and π̂IIDi =

(1−c)2(1−γ)(γ+1)(3γ+1)k2

2(2(3γ+1)k−(γ+1))2 .

We next derive the best response. Given that Dj develops a new product, if f < Φ̂I , then

Di develops a new product; otherwise, it does not: Φ̂I ≡ (1− c)2(γ − 1)k2
[

γ+1
(2(γ−2)(γ+1)k+1)2 −

2(2γ+1)(3γ+2)2

(γ(γ+5)+4(2γ+1)((γ−2)γ−2)k+3)2

]
.

Given that Dj does not develop a new product, if f < Φ̂N , then Di develops a new prod-

uct; otherwise, it does not: Φ̂N ≡ 1
2(1 − c)2(γ − 1)(γ + 1)k2

[
8(γ+1)2(2γ+1)

(γ(γ+5)+4(2γ+1)((γ−2)γ−2)k+3)2 −
3γ+1

(γ−2(3γ+1)k+1)2

]
. Figure B illustrates the equilibrium in downstream Bertrand competition.
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Figure B: Equilibrium in the γ-f/(1− c)2 plane, where k = 1

III Welfare Analysis

We define consumer surplus and gross total surplus (excluding the downstream R&D cost f) as

follows: CS = 1
2 [q

2
e,1+ q

2
e,2+ q

2
n,1+ q

2
n,2]+γ[qe,1(qe,2+ qn,1+ qn,2)+ qe,2(qn,1+ qn,2)+ qn,1qn,2] and

TS = CS + πU + πD1 + πD2. We have equilibrium surpluses: CSII = (c−1)2(3γ+1)k2

2((4γ+2)k−1)2 , TSII =
(c−1)2k((13γ+7)k−2)

2((4γ+2)k−1)2 , CSIN = (c−1)2(γ3−7γ2+8γ+6)k2

(γ+(−4γ2+8γ+8)k−3)2 , TSIN = (c−1)2k((7γ3−33γ2+24γ+42)k−(γ−3)2)
(γ+(−4γ2+8γ+8)k−3)2 ,

CSNN = (c−1)2(γ+1)k2

(1−2(γ+2)k)2 , and TS
NN = (c−1)2k((3γ+7)k−1)

(1−2(γ+2)k)2 . Note that CSIN = CSNI and TSIN =

TSNI .

A. Underinvestment in terms of consumer surplus

Comparing the consumer surpluses, we can show the following Result.

Result 1. (i) Assume that “II” appears if the equilibrium regime is II and NN . Then, from

the consumer surplus perspective, underinvestment downstream occurs if f > ΦN . (ii) Assume

11



that “NN” appears if the equilibrium regime is II and NN . Then, from the consumer surplus

perspective, underinvestment downstream occurs if f > min {ΦN ,ΦI}.

Proof of Result 1. Case (i). From Proposition 2, the equilibrium regime is either “IN&NI”

or “NN” if f > ΦN ; the equilibrium regime is “II” if f < ϕN . Hence, to prove the first

part of Result 1, we need only show that CSII > CSIN (= CSNI) > CSNN . This is because

underinvestment occurs only if f > ΦN .

Case (ii). Applying a similar discussion, we find that underinvestment occurs only if f >

min{ΦN ,ΦI}, where the equilibrium regime is also either “IN&NI” or “NN”. Hence, in both

cases, if we show CSII > CSIN > CSNN , the proof is complete.

First, we consider sign{CSII − CSIN}.

CSII − CSIN =
(1− c)2(1− γ)k2 ψCS

1

2[(4γ + 2)k − 1)]2 [γ + (−4γ2 + 8γ + 8) k − 3]2
,

where ψCS
1 ≡ 8(2 + 10γ + 9γ2 − 4γ3 − 2γ4)k2 − 8γ(2− γ2)k − γ2 + 2γ − 3.

The sign{CSII − CSIN} depends only on ψCS
1 . Because ψCS

1 is a quadratic function of k

and the coefficient of k2 is positive, ψCS
1 = 0 has two roots, kCS

1 and kCS
2 . Solving ψCS

1 > 0 for

k, we obtain k < kCS
1 or k > kCS

2 , where

kCS
1 ≡ 2γ(2−γ2)−

√
6γ4−40γ3+34γ2+52γ+12

4(2+10γ+9γ2−4γ3−2γ4)
; kCS

2 ≡ 2γ(2−γ2)+
√

6γ4−40γ3+34γ2+52γ+12

4(2+10γ+9γ2−4γ3−2γ4)
.

Here, we compare kCS
2 with k0. Let us consider the case c = 1. By using numerical calcu-

lation, we find that ∀γ ∈ [0, 1), k0|c=1 > kCS
2 . Because k0 takes its minimum value at c = 1,

k0 > kCS
2 > kCS

1 for any c > 0. Hence, CSII − CSIN > 0.

Next, we consider CSIN − CSNN and apply a similar proof as the above.

CSIN − CSNN = − (c− 1)2(γ − 1)k2 ψCS
2

(1− 2(γ + 2)k)2 [γ + (−4γ2 + 8γ + 8) k − 3]2
,

where ψCS
2 ≡ 4(3γ4 − 6γ3 − 6γ2 + 16γ + 8)k2 − 4γ(γ2 − 2γ + 2)k − 3 + 2γ.

The sign{CSIN − CSNN} depends only on ψCS
2 . Because the coefficient of k2 in ψCS

2 is

positive, by solving ψCS
2 > 0 for k, we obtain k < kCS

3 or k > kCS
4 , where

kCS
3 ≡ γ(γ2−2γ+2)−(2−γ)

√
γ4−6γ3+γ2+14γ+6

2(3γ4−6γ3−6γ2+16γ+8)
; kCS

4 ≡ γ(γ2−2γ+2)+(2−γ)
√

γ4−6γ3+γ2+14γ+6

2(3γ4−6γ3−6γ2+16γ+8)
.

We show k0 > kCS
4 (> kCS

3 ). At c = 1, by using numerical calculation, we find that ∀γ ∈ [0, 1),

k0|c=1 > kCS
4 . Because k0 takes its minimum value at c = 1, for any c > 0, k0 > kCS

4 > kCS
3

holds. Therefore, CSIN − CSNN > 0.
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B. Underinvestment in terms of total surplus

Hereafter, we assume k > max{1/2, k0}.

To consider the best regime maximizing total surplus, we define the gross benefits of an

increase in the number of downstream firms conducting R&D: ΨTS
21 ≡ TSII − TSIN = TSII −

TSNI , ΨTS
10 ≡ TSIN −TSNN = TSNI −TSNN , and ΨTS

20 ≡ (TSII −TSNN )/2. More precisely,

a rise in the number of downstream firms conducting R&D increases the total surplus if the

following conditions are satisfied: ΨTS
21 > f , ΨTS

10 > f , or 2ΨTS
20 > 2f .

To provide the result for total surplus, we must compare the gross benefits of an increase in

the number of downstream innovating firms. Here, we implicitly define gTS(γ, k), which has the

same sign as ΨTS
21 −ΨTS

10 . That is, kTS(> max{1/2, k0}) is the root of the following equation:

gTS(γ, k) ≡ 64γ(9γ4 + γ3 − 88γ2 − 106γ − 32)k4 + 32(−15γ4 + 20γ3 + 142γ2 + 112γ + 20)k3

+4(29γ3 − 97γ2 − 298γ − 126)k2 − 4(γ2 − 17γ − 26)k − 3− γ = 0.

Note that we can depict all roots of gTS(γ, k) = 0 as in Figure III.1. The blue curves are the

set of pairs (γ, k) that satisfies gTS(γ, k) = 0. The dashed line is k = 1/2. Hence, given γ, we

can uniquely determine k = kTS as the largest root if it exists for k > 1/2. In the shaded area,

gTS(γ, k) > 0.
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-0.2
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k

k = kTS

k = 1/2

Figure III.1: Region of gTS(k, γ) > 0

Then, comparing the total surpluses, we can show the condition under which underinvestment

occurs.

Result 2. We restrict the minimum value of k by max{1/2, k0}. (i) Assume that “NN” is

realized if the equilibrium regimes are “II” and “NN”. Then, from the total surplus perspec-

tive, the conditions under which underinvestment in downstream development occurs is given as

13



follows:

ΦI < f < ΨTS
20 if min{1/2, k0} < k ≤ 1/(4γ),

ΦN < f < ΨTS
20 if max{1/2, k0, 1/(4γ)} < k ≤ kTS ,

ΦN < f < ΨTS
10 if max{1/2, k0, kTS , 1/(4γ)} < k.

(ii) Assume that “II” is realized if the equilibrium regimes are “II” and “NN”. Then, (ii) from

the total surplus perspective, underinvestment in downstream development occurs if the following

condition is satisfied:

ΦN < f < ΨTS
20 if max{1/2, k0} < k ≤ max{1/(4γ), kTS},

ΦN < f < ΨTS
10 if max{1/(4γ), kTS} < k.

Proof of Result 2. In both regimes, we need to show, which regime maximizes total surplus

given the downstream R&D cost f .

We consider case (i) and compare the gross benefits. First, we consider ΨTS
21 −ΨTS

10 .

ΨTS
21 −ΨTS

10 =
(1− c)2(1− γ)2k2 gTS(k, γ)

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3γ]2
.

sign{ΨTS
21 − ΨTS

10 } depends only on gTS(γ, k). From Figure III.1, we obtain gTS(γ, k) > 0 if

max{1/2, k0} < k < kTS .

Next, we consider ΨTS
21 −ΨTS

20 .

ΨTS
21 −ΨTS

20 =
(1− c)2(1− γ)2k2 gTS(γ, k)

4[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
.

Hence, sign{ΨTS
21 −ΨTS

20 } is the same as sign{ΨTS
21 −ΨTS

10 }. Then, we obtain ΨTS
21 −ΨTS

10 > 0 if

max{1/2, k0} < k < kTS .

Finally, we consider ΨTS
20 −ΨTS

10 .

ΨTS
20 −ΨTS

10 =
(1− c)2(1− γ)2k2 gTS(γ, k)

4[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
.

sign{ΨTS
20 − ΨTS

10 } is also same as sign{ΨTS
21 − ΨTS

10 }. Thus, ΨTS
20 − ΨTS

10 > 0 if max{1/2, k0} <

k < kTS .

From these, we have the following ranking of thresholds:

ΨTS
10 < ΨTS

20 < ΨTS
21 if max{1/2, k0} < k < kTS ,

ΨTS
21 ≤ ΨTS

20 ≤ ΨTS
10 if k ≥ kTS .

(1)

14



Then, we establish Lemma 1.

Lemma 1. (i) For max{1/2, k0} < k < kTS, the best regime for total welfare is “II” if f ≤ ΨTS
20

and “NN” if f > ΨTS
20 . (ii) For k ≥ kTS, the best regime for total welfare is “II” if f ≤ ΨTS

21 ,

“IN” or “NI” if ΨTS
21 < f ≤ ΨTS

10 , and “NN” if f > ΨTS
10 .

Comparing ΨTS
10 , ΨPS

20 , ΨTS
21 , ΦI , and ΦN , we show the ranking of thresholds. First, we show

that ΦI < min{ΨTS
10 ,Ψ

TS
21 }. The difference ΨTS

10 − ΦI yields

ΨTS
10 − ΦI =

(1− c)2(1− γ)k2 gTS
10,I

[1− 2(γ + 2)k]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
,

where gTS
10,I ≡ 4(7γ4 − 10γ3 − 42γ2 + 32γ + 40)k2 − 4(4γ3 − 11γ2 − 6γ + 16)k + 2γ2 − 7γ + 4.

The sign{ΨTS
10 − ΦI} depends only on gTS

10,I . Solving gTS
10,I = 0 for k, we have two roots,

k110,I and k210,I , where k110,I < k210,I . Since the coefficient of k2 in gTS
10,I is positive, we have

gTS
10,I > 0 if k < k110,I or k > k210,I . In addition, using numerical calculation, we can show that

k110,I < k210,I < 1/2. As we assume k > max{1/2, k0}, we obtain gTS
10,I > 0, which leads to

ΨTS
10 − ΦI > 0.

Next, we consider ΨTS
21 − ΦI .

ΨTS
21 − ΦI =

(1− c)2(1− γ)k2 gTS
21,I

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k − 3 + γ]2
,

where gTS
21,I ≡ 32(10γ6 +4γ5 − 23γ4 − 14γ3 +98γ2 +128γ+40)k4 − 96(5γ5 − 2γ4 − 12γ3 +7γ2 +

26γ+12)k3+4(65γ4− 78γ3− 87γ2+118γ+90)k2+4(−15γ3+28γ2+ γ− 14)k+5γ2− 12γ+5.

The sign{ΨTS
21 − ΦI} depends only on gTS

21,I . To prove ΨTS
21 − ΦI > 0, we show (i) gTS

21,I > 0

at k = 1/2 and ∂gTS
21,I/∂k > 0, and (ii) ∂gTS

21,I/∂k > 0 at k = 1/2 and ∂2gTS
21,I/∂k

2 > 0.

First, we show (ii) ∂gTS
21,I/∂k > 0 at k = 1/2 and ∂2gTS

21,I/∂k
2 > 0.

∂2gTS
21,I

∂k2
= 8

 48
(
10γ6 + 4γ5 − 23γ4 − 14γ3 + 98γ2 + 128γ + 40

)
k2

−72
(
5γ5−2γ4−12γ3+7γ2+26γ+12

)
k + 65γ4−78γ3−87γ2+118γ+90

 .
Solving ∂2gTS

21,I

/
∂k2 = 0 for k, we obtain two roots. Using numerical calculation, we can show

that all roots are less than 1/2. Because the coefficient of k2 in the equation ∂2gTS
21,I/∂k

2 is

positive, and we assume k > max{1/2, k0}, ∂2gTS
21,I/∂k

2 > 0. Further, substituting k = 1/2 into

∂gTS
21,I/∂k, we have

(
∂gTS

21,I

/
∂k

)∣∣
k=1/2

= 4(40γ6 − 74γ5 + 9γ4 + 67γ3 + 207γ2 + 163γ + 20) > 0.

Thus, we obtain (ii) ∂gTS
21,I/∂k > 0 at k = 1/2 and ∂2gTS

21,I/∂k
2 > 0, which leads to ∂gTS

21,I/∂k > 0

∀k > 1/2.

Since we already had ∂gTS
21,I/∂k > 0, to prove (i) gTS

21,I > 0 at k = 1/2 and ∂gTS
21,I/∂k > 0, we

show only that gTS
21,I > 0 at k = 1/2: gTS

21,I

∣∣
k=1/2

= 20γ6−52γ5+43γ4+8γ3+86γ2+52γ+3 > 0.
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Therefore, ∀k > 1/2, we have gTS
21,I > 0, which implies that ΨTS

21 − ΦI > 0. From this and

ΨTS
10 − ΦI > 0, we obtain Lemma 2.

Lemma 2. ΦI < min{ΨTS
10 ,Ψ

TS
21 }.

Here, we show ΨTS
21 > ΦN and ΨTS

20 > ΦN . We consider ΨTS
21 − ΦN .

ΨTS
21 − ΦN =

(1− c)2(1− γ)k2 gTS
21,N

[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k + γ − 3]2
,

where gTS
21,N ≡ 4(4γ4 − 16γ3 + 3γ2 + 26γ + 10)k2 − 4(2γ3 − 7γ2 + 3γ + 5)k + γ2 − 3γ + 1.

The sign{ΨTS
21 − ΦN} depends only on gTS

21,N . Solving gTS
21,N = 0 for k, we have two roots,

k121,N and k221,N , where k121,N < k221,N . The coefficient of k2 in gTS
21,N is positive, so we have

gTS
21,N > 0 if k < k121,N or k > k221,N . In addition, using numerical calculation, we can show that

k121,N < k221,N < 1/2. Because we assume k > max{1/2, k0}, we obtain gTS
21,N > 0, which leads

to ΨTS
21 − ΦN > 0.

Next, we consider ΨTS
20 − ΦN .

ΨTS
20 − ΦN = −

(c− 1)2(γ − 1)k2 gTS
20,N

4(1− 2(γ + 2)k)2((4γ + 2)k − 1)2 (γ + (−4γ2 + 8γ + 8) k − 3)2
,

where gTS
20,N ≡ 64(13γ6−8γ5−134γ4−44γ3+200γ2+176γ+40)k4−32(27γ5−49γ4−214γ3+72γ2+

280γ+100)k3+12(27γ4−78γ3−131γ2+140γ+114)k2−4(13γ3−50γ2−17γ+54)k+3γ2−14γ+7.

The sign{ΨTS
20 −ΦN} depends only on gTS

20,IN . To prove ΨTS
20 −ΦN > 0, we show (i) gTS

20,N > 0

at k = 1/2 and ∂gTS
20,N/∂k > 0; and (ii) ∂gTS

20,N/∂k > 0 at k = 1/2 and ∂2gTS
20,N/∂k

2 > 0.

First, we show (ii) ∂gTS
20,N/∂k > 0 at k = 1/2 and ∂2gTS

20,N/∂k
2 > 0.

∂2gTS
20,N

∂k2
=24

 32(13γ6−8γ5−134γ4−44γ3 + 200γ2+176γ+40)k2

−8(27γ5−49γ4−214γ3+72γ2+280γ+100)k+27γ4−78γ3−131γ2+140γ+114

 .
Solving ∂2gTS

20,N/∂k
2 = 0 for k, we obtain two roots. Using numerical calculation, we can show

that both roots are less than 1/2. Because the coefficient of k2 in ∂2gTS
20,N/∂k

2 is positive and we

assume k > max{1/2, k0}, ∂2gTS
20,N/∂k

2 > 0. In addition, substituting k = 1/2 into ∂gTS
20,N/∂k,

we have
(
∂gTS

20,N

/
∂k

)∣∣
k=1/2

= 4(104γ6−226γ5−697γ4+685γ3+825γ2+165γ+8) > 0. Therefore,

we obtain (ii) ∂gTS
20,N/∂k > 0 at k = 1/2 and ∂2gTS

20,N/∂k
2 > 0, which leads to ∂gTS

20,N/∂k > 0 for

any k > 1/2.

Since we already had ∂gTS
20,N/∂k > 0, to prove (i) gTS

20,N > 0 at k = 1/2 and ∂gTS
20,N/∂k > 0,

we show only that gTS
20,N > 0 at k = 1/2: gTS

20,N

∣∣
k=1/2

= 52γ6 − 140γ5 − 259γ4 +420γ3 +222γ2 +

24γ + 1 > 0. Therefore, ∀k > 1/2, gTS
20,N > 0, which implies that ΨTS

20 − ΦN > 0. Hence, we

obtain Lemma 3.
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Figure III.2: Region of gTS
10,N (k, γ) > 0

Lemma 3. ΨTS
21 > ΦN and ΨTS

20 > ΦN .

Finally, we compare ΨTS
10 to ΦN .

ΨTS
10 − ΦN =

(1− c)2(1− γ)k2 gTS
10,N

2[1− 2(γ + 2)k]2[(4γ + 2)k − 1]2 [(−4γ2 + 8γ + 8) k + γ − 3]2
,

where gTS
10,N ≡ 32(22γ6 − 16γ5 − 223γ4 − 62γ3 +274γ2 +208γ +40)k4 − 96(7γ5 − 14γ4 − 56γ3 +

17γ2+62γ+20)k3+4(55γ4−180γ3−297γ2+296γ+234)k2−4(7γ3−34γ2−13γ+40)k+γ2−8γ+5.

Note that we can depict all roots for the above equation as in Figure III.2. The blue curves

are the set of pairs (γ, k) that satisfies gTS
10,N (γ, k) = 0. The dashed line is k = 1/2. Hence, given

γ, we can implicitly define k = kTS
10,N as the largest root if it exists for k > 1/2. In the shaded

area, gTS
10,N (γ, k) > 0.

This result yields Lemma 4.

Lemma 4. ΨTS
10 > ΦN if k > kT10,N ; ΨTS

10 ≤ ΦN if max{1/2, k0} < k ≤ kT10,N .

From Proposition 2 and Lemmas 1 and 4, we have three thresholds for k: 1/(4γ), kTS ,

and kTS
10,N . Depicting them, we have Figure III.3. Then, we obtain kTS

10,N < min{kTS , 1/(4γ)}.

However, we cannot conclude that kTS
10,N < kTS because kTS

10,N is implicitly defined and diverges

to infinity as γ → 0. Hence, we potentially have five regions: (i) max{1/2, k0} < k ≤ kTS
10,N ,

(ii) max{1/2, k0, kTS
10,N} < k ≤ min{1/(4γ), kTS}, (iii) max{1/2, k0, kTS} < k ≤ 1/(4γ), (iv)

max{1/2, k0, 1/(4γ)} < k ≤ kTS , and (v) max{1/2, k0, kTS , 1/(4γ)} < k. We depict each case

in Figure III.4.
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Figure III.3: Thresholds
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Figure III.4: Threshold ranking cases

From Proposition 2, Lemmas 2–4, and (1), we obtain the threshold ranking:

ΦI < ΨTS
10 ≤ ΦN < ΨTS

20 < ΨTS
21 if (i) max{1/2, k0} < k ≤ kTS

10,N ,

ΦI ≤ ΦN < ΨTS
10 ≤ ΨTS

20 ≤ ΨTS
21 if (ii) max{1/2, k0, kTS

10,N} < k ≤ min{1/(4γ), kTS},

ΦI ≤ ΦN < ΨTS
21 < ΨTS

20 < ΨTS
10 if (iii) max{1/2, k0, kTS} < k ≤ 1/(4γ),

ΦN < ΦI < ΨTS
10 ≤ ΨTS

20 ≤ ΨTS
21 if (iv) max{1/2, k0, 1/(4γ)} < k ≤ kTS ,

ΦN < ΦI < ΨTS
21 < ΨTS

20 < ΨTS
10 if (v) max{1/2, k0, kTS , 1/(4γ)} < k.

(2)

Combining this ranking with Lemma 1 and Proposition 2, we can identify the condition for

underinvestment downstream. Therefore, the proof is complete.
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