
Significant ties: Identifying relationship lending in 

temporal interbank networks 

Teruyoshi Kobayashi 

Taro Takaguchi 

August 2017 
 

Discussion Paper No.1717 

GRADUATE SCHOOL OF ECONOMICS 

KOBE UNIVERSITY 

ROKKO, KOBE, JAPAN 



Significant ties: Identifying relationship lending in temporal

interbank networks

Teruyoshi Kobayashi1 and Taro Takaguchi2,3,4

1Department of Economics, Kobe University, Kobe, Japan

2National Institute of Information and Communications Technology, Tokyo, Japan

3National Institute of Informatics, Tokyo, Japan

4JST, ERATO, Kawarabayashi Large Graph Project, Tokyo, Japan

August 29, 2017

Abstract

Relationship lending is conventionally interpreted as a strong partnership between a lender

and a borrower. Nevertheless, we still lack consensus regarding how to quantify a lending rela-

tionship while simple statistics such as the frequency and volume of loans have been frequently

used. Here, we propose the concept of a significant tie to statistically evaluate the strength of a

relationship. Application of the proposed method to the Italian interbank networks reveals that

the percentage of relationship lending among all bilateral trades is consistently around 20%–30%

and that their trading properties are distinct from those of transactional trades.

Keywords: Relationship lending, interbank markets, temporal networks

JEL Classifications: G10, G21

1 Introduction

The role of a strong relationship between a lender and a borrower, the so-called relationship

lending (or relationship banking), is one of the most widely discussed issues in theoretical and

empirical studies of banking. Many empirical studies investigate the economic impact of re-

lationship lending on the terms of loans, such as interest rates and the amount of funds lent,

aiming to test the theoretical implications that have been provided since the early 1990s (Sharpe,

1990; Rajan, 1992; Elyasiani and Goldberg, 2004; Freixas and Rochet, 2008). In particular, re-

lationship lending is considered to play an important role in providing liquidity to borrowers

facing credit constraints by reducing the extent of information asymmetry between lenders and
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borrowers. On the other hand, borrowers in relationship trades could be “locked-in” by lenders

due to their exclusive acquisition of private information, leading to a hold-up problem (Petersen

and Rajan, 1995; Von Thadden, 2004; Freixas and Rochet, 2008).

Although a large fraction of the previous studies on relationship lending investigated the

bilateral relationship between a bank and a non-financial firm (Sette and Gobbi, 2015; Kysucky

and Norden, 2015), other studies explored the role of relationship lending in the interbank

market, where banks lend to and borrow from each other (Furfine, 1999; Cocco et al., 2009;

Affinito, 2012; Craig et al., 2015; Hatzopoulos et al., 2015; Bräuning and Fecht, 2017). For

example, Cocco et al. (2009) showed that in the Portuguese interbank market, bilateral trades

made by banks with stronger relationships tend to exhibit lower interest rates. In Italy, Affinito

(2012) found that relationship lenders played an essential role as liquidity providers, especially

in the midst of the global financial crisis of 2007–2009. Bräuning and Fecht (2017) argued that

during the financial crisis, relationship lenders in Germany offered lower interest rates to their

close partners.

The results of the previous analyses, however, are based on ad-hoc and simple measures of

relationship lending, and their simplicity may cause a mismeasurement error, especially when

there is heterogeneity in banks’ activities. A näıve measure of relationship lending is the number

of transactions between two banks conducted during a certain period of time (Furfine, 1999;

Bräuning and Fecht, 2017). Another widely used measure is the degree of concentration in

lending (Cocco et al., 2009; Afonso et al., 2013), measured by the share of funds lent to a

particular counterparty. These two measures are expected to straightforwardly capture the

strength of a bilateral relationship in the interbank market; a bank pair engaging in relationship

lending would trade more frequently and devote a larger share of their total trading volume

to the trades between them than to trades with other banks. However, these measures might

misinterpret the strength of lending relationships. First, the number of trades with a particular

counterparty may merely reflect a bank’s need to trade in the interbank market. For instance, if

two banks have strong needs to provide and obtain overnight liquidity in the interbank market,

respectively, these banks are likely to trade by chance even if they have no preferences for trading

partners. Second, the degree of concentration in lending can be affected by the difference in

the balance-sheet size of counterparties. For example, suppose that a large bank demands a

greater amount of funds than smaller banks do. If a bank lends to the large bank, the degree

of concentration in lending may appear to be large, even though the lending bank has no

preference for partners. The share of lending volume to a particular partner could correctly

capture relationship lending if all the counterparties had the same liquidity demands. Given

these limitations, we need a more carefully designed measure of relationship lending that will

allow us to control for these factors.

In this work, we propose the concept of a significant tie as a quantitative definition of

relationship lending. Two banks are said to be connected by a significant tie if the number
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of trades between them is too large to be explained by random chance after controlling for

their intrinsic activity levels. We control for the activity levels of banks by employing a simple

network-generative model as the null model. The so-called fitness model, one of the standard

network-generative models in network science (Caldarelli et al., 2002; De Masi et al., 2006;

Musmeci et al., 2013), considers a situation in which the probability of matching two banks is

given by a function of their activity levels (i.e., fitnesses) independently of the history of their

transactions. This history-independent property enables us to explicitly compute the theoretical

distribution of the number of bilateral trades under the null hypothesis that there is no preference

for partners, thus allowing for statistical tests. In this paper, we regard a bank pair connected

by a significant tie as engaging in relationship lending. This definition would eliminate the

possible mismeasurement of relationship lending due to the difference in banks’ activity levels,

which should reflect their liquidity demands and balance-sheet sizes.

We apply the proposed identification framework to data on over one million interbank trans-

actions conducted in the Italian interbank market (e-MID) during 2000–2015. The results reveal

important facts about relationship lending, some of which can be summarized as follows. First,

throughout the data period, the percentage of relationship lending among all bilateral trans-

actions is around 20%–30%, although the percentage slightly increased at the time of financial

distress (e.g., the terrorist attacks in 2001 and the global financial crisis in 2008–2009). Second,

significant ties tend to last for longer periods than non-significant ties do, which is consistent

with the conventional notion of relationship lending. Interestingly, the duration of relationships

has a decreasing hazard rate (i.e., the probability of ending a relationship is decreasing in du-

ration). This implies that the value of relationships in the interbank market increases in time,

contrary to the finding of Ongena and Smith (2001) on bank–firm relationships. Third, the

interest rates for relationship lending are indistinguishable from those for transactional lending

before and after the global financial crisis, but in the midst of the crisis the borrowers of rela-

tionship lending paid considerably higher interest rates than the average. This suggests that

some banks faced a hold-up problem at the time of financial distress. Fourth, the chance that

a bank pair is connected by a significant tie is affected little by the nationality of the banks,

suggesting the absence of home-country bias in building trading relationships.

The rest of the paper is organized as follows. In section 2, we explain the data on interbank

transactions. The method for identifying relationship lending is described in section 3, and the

results are shown in section 4. Section 5 concludes.

2 Data

We use time-stamped data on interbank transactions conducted in the Italian online interbank

market (e-MID) between September 2000 and December 2015.1 The data contain detailed

1The e-MID data is commercially available from e-MID SIM S.p.A based in Milan, Italy (http://www.e-mid.it/).

3



01 02 03 04 05 06 07 08 09 10 11 12 13 14 15 16
0

50

100

150

0

200

400

600

800

years

Figure 1: Evolution of interbank networks. Black solid and blue dotted denote the number of active banks N (left

axis) and the number of edges E (right axis) of a daily network, respectively. The largest (November 23, 2000), a

middle-sized (October 29, 2008) and the smallest networks (August 15, 2013) are visualized.

information on every bilateral transaction: date and time (e.g., “2000-09-04 09:12:40”), the

nationality and IDs of banks (e.g., “IT0002”, where “IT” denotes Italy), maturity, interest rates,

and trade amount. In this work, we only use the overnight transactions of unsecured Euro

deposits labeled as “ON” (i.e., overnight) or “ONL” (i.e., overnight large, namely overnight

transactions no less than 100 million Euros), which comprise the great majority of transactions

(> 86%) in the e-MID market. An advantage of focusing on overnight trades is that we can

construct a sequence of snapshots of daily interbank networks having banks as nodes and lending-

borrowing relationships as edges (Fig. 1). An edge is created when a loan is made. If there

are multiple transactions between two banks during a day, we represent the trading relationship

as one unweighted edge. As a result, the number of edges over the whole data period totals

1,033,349.

From Fig. 1, it is evident that interbank networks constantly change their size on a daily

basis, and there is a common downward trend in the numbers of active banks N and edges E.

Here, “active” banks in a daily network are defined as banks that had transactions at least once

between 9:00 and 18:00. Downward spikes in N and E are mostly due to national holidays in

Italy.2 On the other hand, the presence of a long-term downward trend could be attributed to

multiple factors such as the onset of the global financial crisis, the Greek sovereign debt crisis,

and the introduction of highly expansionary monetary policies of the the European Central

Bank (ECB) (and possibly other central banks). Summary statistics of the time series of daily

interbank networks are presented in Table 1.

2Weekends are not included since the market is closed.
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Table 1: Summary statistics of the daily interbank networks. Symbol x denotes the average of variable x over the

corresponding period, and ⟨k⟩ is the daily average degree. Subscripts “max” and “min” represent the maximum and

minimum values, respectively.

All 2000–2006 2007–2009 2010–2015

# days 3,922 1,618 767 1,537

N 95.80 130.40 101.67 56.45

Nmax 161 161 144 89

Nmin 13 56 48 13

E 262.96 402.16 266.00 114.91

Emax 662 662 461 265

Emin 15 122 76 15

⟨k⟩ 2.54 3.07 2.57 1.97

3 Model and methods

3.1 Fitness model

As a baseline framework for the subsequent statistical analysis, we introduce here a simple

model of daily interbank networks that describes how a lender and a borrower are matched.

Our model is a variant of the fitness model (Caldarelli et al., 2002; De Masi et al., 2006). The

fitness model has been frequently used in the field of network science to explain the mechanism

of dynamic network formation, in which the probability that two agents are connected depends

on the fitness of the agents. In the context of interbank markets, fitness corresponds to the

intrinsic activity level of a bank, such as the demand for short-term liquidity if the bank is a

possible borrower and the willingness to supply funds if the bank is a possible lender. In spite

of its simplicity, the fitness model has been shown to explain many rich properties that emerge

from the evolution of interbank networks (De Masi et al., 2006; Kobayashi and Takaguchi, 2017).

In this study, we regard daily interbank networks as undirected (i.e., we ignore the direction of

edges) because our main focus is on identifying and analyzing the role of the bilateral relationship

between banks. We assume that the probability u that bank i trades with bank j on a given

day is expressed by the product of their activity levels:

u(ai, aj) ≡ aiaj , (1)

where ai > 0 represents the activity level (or fitness) of bank i.3 The model nests a wide variety

of well-known network generating models, depending on the specification of {ai}. For example,

3In Kobayashi and Takaguchi (2017), we used a matching function of the form u(ai, aj) = (aiaj)
α. In the current
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if ai = a ∀ i, then the model is equivalent to an Erdős-Rényi random graph with constant

matching probability u = a2 (Erdős and Rényi, 1959). If ai = ki/
√
2M , where ki and M are

the degree of bank i and the total number of edges in a daily network, respectively, then the

matching probability is given by u = kikj/(2M), resulting in the configuration model (Newman,

2010).4

We first estimate the activity vector a ≡ (a1, . . . , aN ), assuming that every element of a is

constant during an aggregate period consisting of τ consecutive business days. In other words,

daily networks in an aggregate period are regarded as independent realizations from the fitness

model with estimated a. In short, we are extracting a N × 1 vector of bank activity levels

from the observed network structure containing N × N elements of information on bilateral

trades (i.e., adjacency matrix). This dimensionality reduction obviously discards the structural

information of a network. In return, the resultant estimates enable us to infer the extent to

which a random matching between banks can explain the empirical network structure, avoiding

an over-identification problem. Based on the estimates of a, we identify the existence of rela-

tionship lending by testing whether the observed number of transactions between two banks is

significantly larger than the value expected by the null hypothesis (i.e., the fitness model).

3.2 Maximum likelihood estimation of activity levels

We split the daily data set into aggregate periods, each consisting of τ business days, and

perform a maximum likelihood estimation of a period by period. Aggregate periods are indexed

by t′ = 1, . . . , t′max, where t′max ≡ ⌊tmax/τ⌋ and tmax denotes the total number of business days

in the data. For the sake of simplicity, we omit subscript t′ in the rest of this section.

If trading pairs are independently matched each day according to probability u(a, a′), then

the number of trades between banks i and j conducted over τ business days follows a binomial

distribution with parameters τ and u(ai, aj). For a given activity vector a, the joint probability

function of the number of trades in an aggregate period then leads to

p({mij}|a) =
∏

i,j:i̸=j

(
τ

mij

)
u(ai, aj)

mij (1− u(ai, aj))
τ−mij , (2)

where mij ≤ τ denotes the number of trades (i.e., edges) between i and j observed in an

aggregate period. The log-likelihood function is thus given by

L(a) = log p({mij}|a)

=
∑

i,j:i̸=j

[mij log (aiaj) + (τ −mij) log (1− (aiaj))] + const., (3)

model, we can set α = 1 without loss of generality because the case of α ̸= 1 can be recovered by redefining the

activity parameter as aα.
4The configuration model is a network model that generates a random network having a prescribed degree sequence

{ki}. See Newman (2010) for details.
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where “const.” denotes the terms that are independent of a. Let N denote the number of

active banks that have at least one transaction during a given aggregate period. The maximum-

likelihood estimate of a is the solution for the following N equations:

Hi(a
∗) ≡

∑
j:j ̸=i

mij − τ(a∗i a
∗
j )

1− (a∗i a
∗
j )

= 0, ∀ i = 1, . . . , N, (4)

The first-order condition (4) is obtained by differentiating the log-likelihood function Eq. (3)

with respect to ai. The system of nonlinear equations, H(a) = 0, can be solved by using a

standard numerical algorithm.5 Hereafter, the computed solution (i.e., the maximum likelihood

estimate) of a is denoted by a∗ ≡ (a∗1, . . . , a
∗
N ). By repeating this process period by period, we

obtain the estimates of activity vectors
{
a∗
1,a

∗
2, . . . ,a

∗
t′max

}
.

3.3 Statistical tests for relationship lending

Here we present two sorts of statistical tests; one is for identifying bank pairs engaging in

relationship lending and the other is for detecting relationship-dependent banks. In the same

manner in which estimate the activity levels of banks (section 3.2), we split the daily data set

into t′max aggregate periods and implement the tests period by period.

3.3.1 Edge-based test for relationship lending

If bank i has no preference for trading partners and thereby finds a partner in a random manner

as suggested in the fitness model, then the number of bilateral transactions between banks i

and j during a given period, mij , should obey the following binomial distribution:

g(mij |a∗i , a∗j ) =

(
τ

mij

)
u(a∗i , a

∗
j )

mij (1− u(a∗i , a
∗
j ))

τ−mij , ∀ i, j = 1, . . . , N. (5)

In contrast, if bank i has a strong (i.e., non-random) partnership with bank j, then the

distribution of mij will deviate from a binomial distribution. Let mc
ij denote the c-th percentile

(0 ≤ c ≤ 100) of g(mij |a∗i , a∗j ) (i.e., c/100 = G(mc
ij |a∗i , a∗j )), where G is the cumulative distribu-

tion function (CDF) of g(mij |a∗i , a∗j ). If mij > mc
ij for a c value close to 100, then the empirical

number of transactions is too great to be explained by random chance under the null hypothesis,

indicating the presence of relationship lending. We call this test the edge-based test since this is

a test for the significance of edges in interbank networks. If mij > mc
ij , then we say that banks

i and j are connected by a significant tie and engaging in relationship lending. We set c = 99

5We solved the problem by using the Matlab function fsolve, which is based on a modified Newton method,

called the trust-region-dogleg method. The initial values of a are given by the configuration model, ai =∑
j:j ̸=i(mij/τ)/

√
2
∑

i<j mij/τ , where the numerator and the denominator represent the daily means of bank i’s

degree and the doubled number of total edges, respectively. There are a few cases in which the estimated activity

values ai and aj indicate u(ai, aj) > 1. In such cases, we assume u = 1.
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Figure 2: Schematic of a significant tie. For illustrative purposes we set τ = 3. The size of circle represents the

activity level of a bank. If banks are matched randomly according to the fitness model, then banks with higher

activity levels will receive larger number of edges on average. If the number of trades between bank i and bank j is

too great to be explained by random chance, then the two banks are considered to be connected by a significant tie

and engaging in relationship lending.

(i.e., 99% significant level) throughout the paper. A schematic of a significant tie is presented

in Fig. 2. Importantly, the number of bilateral trades in a given period does not necessarily

indicate the presence of a significant tie. Under a random matching (the upper row of Fig. 2),

bank i trades twice with each of the two counterparties having the largest activity levels, which

should be a natural consequence given the high matching probabilities. By contrast, banks i

and j trade three times in the bottom row of Fig. 2, which is unexpected based on their small

activity levels. Therefore, bank i is considered to engage in relationship lending with bank j

but not with the other three.

3.3.2 Node-based test for relationship-dependent banks

Since we have random matching probabilities u(a, a′), we can also test the extent to which a

bank depends on a limited number of partners. The probability function of aggregate degree

Ki is given as

f(Ki|a∗) =
∑
{Aij}

∏
j:j ̸=i

g(mij = 0)1−Aij (1− g(mij = 0))Aij × δ

∑
j

Aij ,Ki


=
∑
{Aij}

∏
j:j ̸=i

(1− u(a∗i , a
∗
j ))

τ(1−Aij)(1− (1− u(a∗i , a
∗
j ))

τ )Aij × δ

∑
j

Aij ,Ki

 , (6)
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where Aij is the (i, j)-element of the aggregate adjacency matrix; Aij = 1 if there is at least

one transaction between banks i and j during an aggregate period, and Aij = 0 otherwise.

δ(x, y) denotes the Kronecker delta which equals one if x = y and zero otherwise. Note that the

second equality follows from relation g(mij = 0) = (1 − u(a∗i , a
∗
j ))

τ (Eq. (5)). In fact, Eq. (6)

is equivalent to the distribution of the sum of N − 1 random variables drawn from a Bernoulli

distribution with parameter {1− (1−u(a∗i , a
∗
j ))

τ}j:j ̸=i, or a Poisson binomial distribution. Here

we would like to compute the CDF of f(Ki|a∗) to evaluate the significance of empirical Ki.

However, exact calculation of the CDF of a Poisson binomial distribution is notoriously difficult

because one must compute
(
N
Ki

)
number of terms (Steele, 1994). Thus, we instead approximate

the probability distribution of Ki to a Poisson distribution (Le Cam, 1960):

f(Ki|a∗) ≈ λKi
i e−λ∗

i

Ki!
≡ f̃(Ki|a∗), (7)

where λ∗
i ≡

∑
j:j ̸=i[1 − (1 − u(a∗i , a

∗
j ))

τ ]. An error bound for this Poisson approximation is

provided by an extended version of the Le Cam’s theorem (Le Cam, 1960; Barbour and Eagleson,

1983; Steele, 1994):

∞∑
Ki=0

∣∣∣∣∣f(Ki|a∗)− λKi
i e−λ∗

i

Ki!

∣∣∣∣∣ < 2(1− e−λ∗
i )

λ∗
i

∑
j:j ̸=i

p2ij , ∀ i, j, (8)

where pij ≡ 1− (1− u(a∗i , a
∗
j ))

τ .

The Poisson approximation enables us to formally test the null hypothesis that the empirical

aggregate degree Ki is explained by random chance. Let Kc′

i denote the c′-th percentile (0 ≤
c′ ≤ 100) of f̃(Ki|a∗). In other words, c′/100 = F̃ (Ki|a∗), where F̃ (Ki|a∗) is the CDF of

f̃(Ki|a∗). If the data reveal that Ki < Kc′

i for c′ close to zero, then bank i has a significantly

smaller number of trading partners than random chance would suggest. If this is the case, it

indicates a significant dependence of bank i on relationship lending. Hereafter we call this type

of test the node-based test, and we set c′ = 1.

3.4 Selection of aggregate length τ

Before applying the model and statistical tests described in the previous sections to empirical

data, we must determine parameter τ , the length of an aggregate period. In fact, varying τ

would cause trade-offs between approximation accuracy and the stability of aggregated data.

On the one hand, the choice of τ would directly affect the accuracy of the Poisson approximation

through its influence on λ∗
i and pij in Eq. (8). The average error bound (Eq. (8)) increases with

τ as limτ→∞ pij = 1,∀ i, j (Fig. S1a in Supplementary Information). Taking into account this

positive relationship between the error bound and τ , τ should be set as small as possible. On the

other hand, employing a smaller value of τ would also affect the stability of statistical results as

the aggregate networks could become more unstable because the number of active banks would

change drastically period to period (see Fig. 1). This necessarily reduces the stability of the
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Figure 3: Maximum-likelihood estimates of activity. Solid line represents median, and lower and upper dotted lines

respectively denote the 5th and 95th percentiles of the estimated activity distribution in each aggregate period.

data to be examined. Figure S1b illustrates that the average and the standard deviation of the

absolute changes in N , denoted by ∆Nt′ ≡ |Nt′ −Nt′−1| (t′ = 2, . . . , t′max), take minimum values

around τ = 12. Judging from these observations, we employ τ = 10 as a benchmark value. We

note that all the qualitative results shown in this paper are quite robust and not sensitive to

the choice of τ .

4 Results

4.1 Estimation results: Activity level

The distribution of the estimated activity levels, a∗, is shown in Fig. 3. The distribution has

been relatively stable throughout the data period. Based on those estimates, we can infer

how many transactions would be conducted under the null hypothesis in which the matching

probability is given by u(a∗i , a
∗
j ) ∀ i, j. The empirical number of transactions in an aggregate

period, denoted by M , is given as

M =
∑
i<j

mij . (9)

The expected number of transactions under the null hypothesis M∗ is given as

M∗ = τ
∑
i<j

u(a∗i , a
∗
j ). (10)

Figure 4a illustrates the relationships between N and M in the empirical data and the estimated

model. The almost perfect fit between the estimated values of M∗ and the empirical data

indicates that the maximum likelihood estimation works fairly well; the estimated activity level

10
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Figure 4: Comparison between the model and the empirical values of M and K. Each dot corresponds to an aggregate

period. (a) The total number of edges predicted by the model (Eq. (10)) well fits the empirical data. (b) The number

of unique partners predicted by the model (Eq. (12)) overestimates the empirical data.

accurately captures the actual bank activity in terms of the total number of trades. In Kobayashi

and Takaguchi (2017), we showed that there is a clear superlinear relationship between the

numbers of banks and edges at the daily scale (i.e., τ = 1) using the same data. Figure 4a in

fact reveals that a similar scaling relation arises even at the aggregate level of τ = 10 business

days.

On the other hand, if we take the presence of relationship lending as a given, the empirical

numbers of trading partners should be smaller than the estimate values under the null hypothe-

sis. To see this, Fig. 4b shows the average of aggregate degree K, the number of unique trading

partners in an aggregate period:

K =
1

N

∑
i,j

Aij . (11)

Under the null hypothesis, the average aggregate degree is computed as

K∗ =
1

N

∑
i,j

[1− (1− u(a∗i , a
∗
j ))

τ ]. (12)

As shown in Fig. 4b, K∗ overestimates K, meaning that in the real world banks tend to be more

selective than a random matching would suggest. In the next section, we identify the presence

of relationship lending by statistically testing the extent of deviation from the null model.

4.2 Identification results: Significant ties and relationship-dependent

banks

Figures 5a and 5c, respectively, show the number and fraction of significant ties identified by the

edge-based test. We also checked the robustness of the results to the choice of τ in SI (Fig. S2).

Overall, while the number of significant ties has been decreasing along with the downward trend
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Figure 5: Statistical identification of relationship lending. The number of (a) identified pairs by the edge-based test

and (b) nodes identified by the node-based test. The fraction of the identified (c) pairs and (d) nodes. The results

are at 1% significant level in both tests (i.e., c = 99 in the edge-based test and c′ = 1 in the node-based test).

of E (see Fig. 1), the percentage of significant ties among all ties is consistently around 20%–

30% with some fluctuations over time. More precisely, in the early 2000s, fewer than 20% of

bilateral relationships are considered significant ties, and the percentage gradually rises until

2009, when the financial markets suffered from a fear of liquidity shortage. In the midst of

the global financial crisis, more than 30% of bank pairs are connected by significant ties. The

percentage then gradually decreased until around 2014. In June 2014, the ECB lowered its key

policy rate to a negative value for the first time in history, which may have affected the trading

patterns of banks such that they became more likely to trade with particular partners than with

randomly selected ones.

Figures 5b and 5d show the number and share of relationship-dependent banks identified by

the node-based tests, respectively. As in the case of significant ties, the share of relationship-

dependent banks increased drastically after the September 11 terrorist attacks in 2001 and after

the failure of Lehman Brothers in September 2008. We note that the results of the node-based

tests should be treated with care; the fraction of relationship-dependent banks increases with

τ while the fraction of significant ties is almost unaffected (Fig. S2). A possible reason for this

dependence on τ is a deterioration in the accuracy of the Poisson approximation (Eq. (8)) as

described in section 3.4. Although the absolute values of the fraction of relationship-dependent
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Figure 6: Fraction of (a) Italian-Italian, (b) Italian-foreign, and (c) foreign-foreign bank pairs. Black solid and

red dotted lines indicate the fractions of the corresponding pairs among all pairs and among relationship pairs,

respectively. (d) Fraction of Italian banks among all banks (black solid line) and among relationship-dependent

banks (blue dotted lines).

banks vary with τ , the relative trends over the data period appear similar.

As we saw in Fig. 5, the proposed methods (section 3.3) allow us to statistically identify bank

pairs engaging in relationship lending and relationship-dependent banks. It is worth noting that

this would not be possible without an appropriate null model, which was missing in previous

studies (see section 4.4 for an evaluation of the previous measures for the strength of relationship

lending).

Information regarding banks’ country IDs enables us to investigate the correlations between

banks’ nationality and the existence of a significant tie and between nationality and the chance of

being a relationship-dependent bank. Since Italian banks occupy a great majority in the e-MID

market, we split all ties into three combinations of nationalities: Italian-Italian, Italian-foreign,

and foreign-foreign pairs.6

As shown in Fig. 6, the fraction of Italian-Italian pairs among all pairs was close to one

in the early 2000s, yet it considerably decreased toward the onset of the global financial crisis

in 2007–2008. At the same time, Italian-foreign and foreign-foreign pairs started to increase

their presence over the pre-crisis period. The fraction of Italian-Italian pairs began to increase

again shortly after the financial crisis occurred, gradually returning to its pre-crisis level. This

6The list of all countries is as follows (the number of banks is in parenthesis): Austria (2), Belgium (6), Switzerland

(6), Germany (23), Denmark (1), Spain (7), Finland (1), France (10), Great Britain (14), Greece (6), Ireland (5),

Italy (213), Luxembourg (4), Holland (4), Norway (1), Poland (1), and Portugal (4).

13



All ties

Significant ties

June 23, 2014
— July 4, 2014

April 23, 2001 
— May 7, 2001

June 12, 2007
— June 25, 2007

Relationship- 
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Figure 7: Visualization of aggregate networks. In the upper and middle rows, red and black circles represent

Italian and foreign banks, respectively. In the bottom row, relationship-dependent banks are denoted by blue circles.

The visualization is done by igraph package for Python (http://igraph.org/python/), using the Kamada-Kawai

algorithm (Kamada and Kawai, 1989).

seems to suggest that an Italian bank tends to trade with other Italian banks when the market

is under stress. However, the share of Italian-Italian significant ties among all significant ties

moved in sync with the fraction of Italian-Italian pairs among all pairs, suggesting the absence of

home-country bias in creating significant ties. Somewhat counterintuitively, Italian-Italian pairs

are less likely to form significant ties than Italian-foreign and foreign-foreign pairs are. When it

comes to the fraction of relationship-dependent banks (Fig. 6d), the trend over the data period

is similar to that of the fraction of Italian-Italian pairs (Fig. 6a). In particular, the percentage

of Italian banks among all relationship-dependent banks is no less than 80% throughout the

data period. The deviation between the two lines in Fig. 6d suggests that the probability of

becoming a relationship-dependent bank has been higher for Italian banks than for non-Italian

banks at least until around 2012.

Figure 7 presents a visualization of networks observed in different aggregate periods. In the

early 2000s, there is no clear cut of groups since most active banks are Italian and they are
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Figure 8: Duration of a lending relationship. (a)–(c): red triangle (blue circle) denotes the complementary cumulative

distribution function (CCDF) of the length of consecutive periods in each of which a bank pair is connected by a

significant tie (a non-significant tie). In panel (a), the slope of the CCDF is also shown (black solid), which is

estimated by the maximum-likelihood method proposed by Clauset et al. (2009). (d)–(f): histogram of the total

number of periods in which a bank pair is connected by a significant tie (or a non-significant tie).

well connected to each other. We observe a similar situation when we construct the network

of significant ties only. By contrast, in a period shortly before the financial crisis, apparently

there exist two tightly connected groups of banks, one formed by Italian banks and the other

by foreign banks. This observation is explained by the result shown in Fig. 6; the fraction of

foreign-foreign pairs reached its peak in 2007 while the fraction of Italian-foreign ties began to

decrease in 2006. The two groups can be seen more clearly if we leave significant ties only since

just a few significant ties connect Italian and foreign banks in this period. In 2014, the network

looks similar to that in 2001, but the numbers of active banks and edges are much smaller in

2014 than in 2001. In addition, the share of relationship-dependent foreign banks is relatively

larger in the period during the crisis than in the pre- and post-crisis periods, although the vast

majority of relationship-dependent banks are still Italian banks.

4.3 Role of relationship lending

The previous sections confirmed the existence of significant ties in the empirical data. In this

section, we explore the difference in the outcomes of significant and non-significant ties in terms

of their duration, trading conditions, and structural characteristics.
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4.3.1 Duration and the value of partnership

If relationship lending is understood as a long-lasting relationship between banks, the duration

of significant ties should be longer than that of non-significant ties. Here, the duration of a

(non-)significant tie between two banks is defined as the length of consecutive periods in each of

which these banks form a (non-)significant tie between them. In fact, the duration distribution

of significant ties has a fatter tail than that of non-significant ties (Fig. 8). The duration

distribution of significant ties follows a power law at least in the pre-crisis period (2000–2006).

This fat-tail behavior indicates that the longer the duration length, the more likely the current

partnership will continue (i.e., the hazard rate is decreasing). To see this, let P (d) = 1−(κ/γ)d−γ

(κ > 0) be a continuous approximation of the CDF of duration length d. The hazard rate λ, or

the probability that a bank pair terminates their d−period relationship, leads to

λ(d) =
p(d)

1− P (d)
=

γ

d
, (13)

where p(d) is the probability density function of d. It follows that during the pre-crisis period,

the hazard rate at duration length d is given by λ(d) ≈ 2.17 d−1.

The decreasing hazard contrasts with the previous result for bank–firm relationships shown

by Ongena and Smith (2001). They found that the probability of terminating a relationship

increases in duration, arguing that the value of relationships decreases over time. Our result indi-

cates that the opposite holds true for the interbank market; the value of interbank relationships

may increase over time. This is consistent with the traditional theory of relationship lending

that supports the benefit of a long-term relationship (Freixas and Rochet, 2008), suggesting that

the longer the duration of a partnership, the greater the extent of private information owned by

a lender (Sharpe, 1990).

One might argue that the long duration of significant ties simply comes from the fact that re-

lationship pairs tend to trade more frequently than non-relationship pairs do. However, Fig. 8d–f

reveals that the number of periods in which non-relationship pairs trade is larger than that of

relationship pairs. Thus, the long duration of a significant tie is not attributed to the high

frequency of the pair’s trades.

4.3.2 Terms of trades and the substitutability of trading partners

In this section, we analyze the impact that the presence of a significant tie has on trade conditions

(i.e., interest rates and the amount of loans). To control for the influences of shifts in the policy

rate and variations in the trading volume, we define the weighted average of detrended interest

rates on bilateral transactions between banks i and j as

rt′,ij ≡
∑

t∈Dt′
(rrawt,ij − ⟨rt⟩)wt,ij∑
t∈Dt′

wt,ij
, (14)
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Figure 9: Impact of relationship lending on (a) interest rates and (b) trade amount. Solid line and red shading

indicate the average and the 95% confidence interval, respectively. In each panel, the difference is calculated by

subtracting the values for non-significant ties from those for significant ties.

where

⟨rt⟩ ≡
∑

i<j r
raw
t,ij wt,ij∑

i<j wt,ij
, (15)

and rrawt,ij is the raw interest rate. wt,ij is the total volume of funds traded between banks i and

j on day t. Set Dt′ represents the set of dates t that belong to aggregate period t′. The average

amount of loans per trade between banks i and j is defined as

W t′,ij ≡
∑
t∈Dt′

wt,ij

mt′,ij
, (16)

where mt′,ij denotes the total number of trades between banks i and j during period t′.

Figure 9 shows the differences in rt′,ij and W t′,ij between significant ties and non-significant

ties, calculated by subtracting the values for non-significant ties from those for significant ties.

The weighted interest rates are higher for relationship trades than for transactional trades by

around three to six basis points during the global financial crisis. This fact implies the presence of

imperfect substitutability of trading partners and that relationship lending played an important

role in the management of liquidity (Affinito, 2012).7 In interbank markets, it is occasionally

observed that banks trying to meet urgent liquidity needs accept high interest rates to avoid

stigma even if they can borrow from the central bank at lower rates (Ashcraft et al., 2011; Ennis

and Weinberg, 2013). The result shown in Fig. 9a implies that those banks that played a role

as “lenders of last resort” were connected with their borrowers by significant ties.

The upward spike in the difference in interest rates observed around January 2012 is con-

sidered to be caused by a “longer-term refinancing operation (LTRO)” introduced by the ECB.

As pointed out by Barucca and Lillo (2015), the introduction of LTRO suddenly reduced the

7A price discrimination could occur if the maturity structures were different between relationship and transactional

trades, but in this work we focus only on overnight transactions.
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Figure 10: Trilateral relationship and significant ties. (a) Schematic of the probability Pnonsig ≡ T2/(T2 + T3) that

a triangle having two significant ties has a non-significant closing tie. Red edges labeled “sig” represent significant

ties. (b) Time series of Pnonsig and the fraction of {Tℓ}ℓ=0,1,2,3 among all triangles.

number of active banks and the volume of loans in the e-MID market. The decrease in the num-

ber of active banks might have undermined the substitutability of trading partners by limiting

the number of possible partners, leading to an increase in the price of loans for relationship-

dependent banks.

4.3.3 Significant ties in trilateral relationship

In the literature of social network analysis, it has been widely recognized that there is a tendency

that “friends of friends are friends” (Wasserman and Faust, 1994). This is called a triadic

closure since the two individuals having a friend in common often close the triangle (Easley and

Kleinberg, 2010). Many studies have revealed that triadic closure plays an important role in

achieving social cooperation (Hanaki et al., 2007), determining the spread of a behavior across

ties (Centola, 2010), and understanding the long-term evolution of network structure (Lewis

et al., 2012), to name a few. Analogously, the purpose of this section is to see whether triadic

closures are also ubiquitous in the “friendship” network of banks. To be more precise, the

question we address here is whether a significant tie is more likely to close a triangle of trading

relationships (i.e., trilateral relationship) than a non-significant tie, provided that the triangle

has at least two significant ties. This question is motivated by the well-known fact that triangles

in social networks are mostly made of three strong ties (Granovetter, 1973; Onnela et al., 2007;

Easley and Kleinberg, 2010). If a significant tie is more likely to close a triangle, it would

indicate a previously unknown similarity between financial and social networks. In contrast,

if a non-significant tie is more likely to close a triangle, then it would shed light on a unique

characteristic of financial networks.

To answer this question, we first need to count the numbers of triangles in the aggregate

networks having different numbers of significant ties (see Appendix for the procedure of cal-

culation). Let Tℓ denote the number of triangles having ℓ significant ties (ℓ = 0, 1, 2, 3) in an
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aggregate network. The quantity we want to compute is schematically visualized in Fig. 10a;

if Pnonsig ≡ T2/(T2 + T3) is significantly larger than the fraction of non-significant ties in the

whole network (i.e., the probability of placing a non-significant tie by chance), then the closing

tie of a trilateral relationship is more likely to be a non-significant tie than random chance would

suggest. Since the percentage of significant ties is roughly 20%–30% throughout the data period

(Fig. 5), the fraction of non-significant ties, denoted by Snonsig ≡ |Inonsig|/
∑

i<j Aij , where

Inonsig is the set of non-significant ties, turns out to be around 0.7 − 0.8, which becomes the

baseline for evaluating Pnonsig.

Figure 10b shows that Pnonsig is always above 0.9 except for a few aggregate periods, meaning

that a trilateral relationship having at least two significant ties tends to have a non-significant

tie as the closing tie. This observation is statistically verified by the t-test for the null hypoth-

esis that the means of Pnonsig and Snonsig are equal, which is rejected with p-value < 0.001.

Figure 10b also illustrates the time series of {Tℓ}ℓ=0,1,2,3 normalized by T , the total number of

triangles in each period. The order T0 > T1 > T2 > T3 consistently holds true throughout the

data period. In addition, we see some trends in their relative shares; the share of T0 and T1

roughly move in opposite directions while the shares of T2 and T3 remain stable.

The result suggests that the local dynamics of tie formation in financial networks is quite

different from that in social networks. While triangles of three strong ties are ubiquitous in

networks formed by human interactions, interbank networks do not exhibit such a property.

This is somewhat surprising because Kobayashi and Takaguchi (2017) reported that social and

financial networks share many local- and global-scale properties. The current analysis thus

provides new evidence regarding how economic transaction patterns of banks are essentially

different from social interaction patterns of humans.

4.3.4 Intraday trading patterns

In the previous sections, we observed that bank pairs connected by significant ties exhibit

different behaviors than other transactional pairs at a τ -day aggregate scale. In this section, we

explore intraday trading patterns to see if the existence of a significant tie has any impact on

trades at higher frequencies.

In Fig. 11, we observe subtle differences in the timing of intraday trading. A bank pair

engaging in relationship lending tends to conduct a larger fraction of trades at early hours (9:00–

11:00) and a smaller fraction of trades after 15:00 than a bank pair engaging in transactional

trading (Fig. 11a). This difference in the timing of trades does not seem to have a considerable

impact on interest rates, but late-hour relationship trades resulted in slightly higher interest

rates than those of transactional trades until the crisis period (Fig. 11b).8 Nevertheless, we

still see a downward sloping term structure of intraday interest rates, which has been reported

8The interest rate on the trade between banks i and j at time θ on day t is defined as rθ,t,ij = rrawθ,t,ij −⟨rt⟩, where
the superscript “raw” denotes the raw interest rate (before detrending) and ⟨rt⟩ is defined in Eq. (15).
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previously (Baglioni and Monticini, 2010, 2008; Abbassi et al., 2017).

It is evident from Fig. 11c that the positive difference in the trade amount between relation-

ship and transactional lending tends to get larger as the market-closing time approaches. These

gaps in the interest rate and amount of trades may reflect the fact that those banks that must

obtain or release liquidity at the end of the market tend to rely on their partners to which they

are connected by significant ties.

4.4 Comparison with previous measures

In closing this section, we assess the previously proposed measures of relationship lending by

computing the extent to which they are able to detect significant ties. A näıve measure of

lending relationship is the frequency of interactions between two banks (Furfine, 1999; Kysucky

and Norden, 2015; Bräuning and Fecht, 2017):

RLij,t′ ≡ log(1 +mij,t′), (17)

which denotes the logarithm of the number of transactions between banks i and j conducted

during an aggregate period t′. The second and more widely used measure is the lender–preference

index (LPI) (Cocco et al., 2009; Affinito, 2012; Craig et al., 2015; Bräuning and Fecht, 2017):

LPIij,t′ ≡
∑

t∈Dt′
wij,t∑

j:j ̸=i

∑
t∈Dt′

wij,t
. (18)

LPI captures the degree of concentration of lending to a particular partner.9 If the fraction of

funds lent to a particular partner is high, then it would indicate the existence of relationship

lending. These two conventional measures are usually employed as explanatory variables of

linear regression models.

Now let us assess the accuracy of RL and LPI in terms of their detectability of significant ties.

Let Isig denote the set of significant ties identified by our edge-based test, which is treated as the

“ground truth.” The fraction of significant ties among all ties in a given period is represented

as Ssig ≡ |Isig|/
∑

i<j Aij . For each x = RL,LPI, let Ix be the set of bank pairs whose score of

x is ranked top Ssig% in the corresponding period. If measure x correctly reflects the strength

of a bilateral relationship, then the following Jaccard index will take a value close to one:

Jx =
|Ix ∩ Isig|
|Ix ∪ Isig|

, x = RL,LPI. (19)

Figure 12 reveals that, somewhat surprisingly, RL outperforms LPI, although the definition

of LPI seems more sophisticated than that of RL as a measure of a lending relationship. This

may be due to the fact that the degree of concentration of lending to or borrowing from a

particular bank does not necessarily relate to the number of trades with the bank, whereas our

definition of a significant tie generally favors a bank pair conducting a large number of trades.

9Note that the amount lent is equal to the amount borrowed in our setting since we only treat undirected networks.
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Figure 12: Comparison with the conventional measures of relationship lending. Black solid (red dashed) line represents

the “accuracy” of LPI (RL), defined by the Jaccard index (Eq. (19)). RL and LPI are given by Eqs. (17) and (18),

respectively.

RL just reflects the number of bilateral trades regardless of their volume, but it is closer to our

idea of significant ties than LPI is. Of course, just counting the number of trades is not enough

because one must take into account the difference in banks’ activity levels. An observation of

repeated trades between two banks does not necessarily lead to the presence of a significant

tie because such repetitive trades may be explained by random chance if the two banks exhibit

high activity levels. Nevertheless, Fig. 12 shows that RL is far more appropriate than LPI as a

measure of relationship lending, although JRL ∼ 0.6 does not mean that RL is very accurate.

5 Conclusion and discussion

This work proposed a statistical test for identifying bank pairs that are engaging in relationship

lending by introducing the concept of a significant tie. The proposed identification test was

applied to the Italian daily interbank networks formed by overnight transactions. The point of

our identification method is whether or not the number of trades between two banks can be

explained by random chance after controlling for the intrinsic activity levels of those banks. If

the number of trades is statistically significant (i.e., cannot be explained by random chance),

then we say that the two banks are connected by a significant tie. We showed that the percentage

of significant ties among all ties has been constantly 20%–30% over the past years, while the

number of significant ties itself has been declining along with the total number of trades in the

interbank market.

We found several important properties that distinguish relationship lending from other trans-

actional lending. First, the duration of a significant tie is, on average, longer than that of a

non-significant tie. We argued that this property indicates that the value of continuing a rela-

tionship increases in duration, as suggested by many theoretical studies (Freixas and Rochet,
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2008). Second, a trilateral relationship of three significant ties is quite rare. In fact, the lack of

triadic closures is a unique feature of interbank networks, which will distinguish the structural

characteristic of interbank networks from that of social networks, such as friendship networks

of humans (Onnela et al., 2007; Easley and Kleinberg, 2010). Third, in the midst of financial

distress, banks in need of liquidity tend to rely on banks to which they are connected by signif-

icant ties even at the cost of high interest rates. This may be evidence that relationship lenders

play a role as the “lender of last resort” during financial turmoil while they impose high interest

rates, implying the existence of a hold-up problem. Fourth, there is no home-country bias in

creating significant ties.

We remark that our statistical tests for significant ties are quite general and thereby not lim-

ited to the use of identification of relationship lending in interbank networks. For example, they

could be applied to trading networks in the corporate bond market (Maggio et al., 2017) and the

municipal bond market (Li and Schurhoff, 2014), searching for a hidden structure of significant

ties between dealers. Our methods could also be implemented on temporal social networks to

identify “friends” from a record of face-to-face interactions (Cattuto et al., 2010). The proposed

identification method could, in principle, be applied to various “friendship” networks in social

as well as economic systems.

The current work also provides a temporal-network analysis of the interbank market, which

is still scarce in the field of network science and in economics, with a few exceptions (Barucca

and Lillo, 2015; Kobayashi and Takaguchi, 2017). Understanding the dynamic formation of

interbank networks is quite important because the structure of networks formed by overnight

bilateral transactions drastically changes day to day, accordingly the risk of financial contagion

varies over time. While most of the studies on financial systemic risk are based on static

networks (Gai and Kapadia, 2010; Cont et al., 2013; Brummitt and Kobayashi, 2015; Nirei

et al., 2016), in the real world the risk of financial contagion emerges on networks with time-

varying structures. We hope that our work will advance our knowledge about the mechanism of

temporal financial networks, which could contribute to the real-time management of financial

stability. 　

Appendix: Counting the number of triangles

In section 4.3.3, we counted the number of triangles in an aggregate network to investigate the

role of significant ties in a trilateral relationship. Computing the number of triangles having k

significant ties, Tk, is straightforward if we exploit the power of adjacency matrix. First, the

total number of triangles in the whole network is given by T =
∑3

k=0 Tk = tr(A3)/6, where tr(·)
denotes trace. This equality is based on the fact that the (i, j) element of An represents the
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number of paths from i to j that can be reached at exactly n steps. Therefore, the diagonal

elements of A3 contain the numbers of triangles. Second, the number of triangles formed by

three significant ties is given as T3 = tr(A3
sig)/6, where Asig is an adjacency matrix of the network

consisting only of significant ties. Third, the number of triangles formed only by non-signifiant

ties leads to T0 = tr((A−Asig)
3)/6. Fourth, the number of triangles having exactly one and

two significant ties, T1 and T2, are obtained as follows:

1. Create a “signed” adjacency matrix Asigned, where (Asigned)ij = 1 if i and j are connected

by a significant tie, −1 if connected by a non-significant tie, and 0 otherwise.

2. Compute Tsigned = tr(A3
signed)/6. This is equal to the difference between the number of

triangles having an odd number of significant ties and the number of triangles having an

even number of significant ties (i.e., Tsigned = (T1 + T3)− (T0 + T2)).

3. Derive T1 and T2 by substituting T , T0, and T3 into equations T =
∑3

k=0 Tk and Tsigned =

(T1 + T3)− (T0 + T2).

This procedure gives us Tk for k = 0, 1, 2, 3.
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Figure S2: Effects of varying aggregate length τ . Left and right columns present the fraction of significant ties and

the fraction of relationship-dependent banks, respectively.
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